
So�ware Development (cs2500)

Lecture 44: �e Joys of enums

M.R.C. van Dongen

February 9, 2011

Contents
1 Outline 1

2 Multiway Branching 2

3 Int Enums 4

4 Enums to the Rescue 5

5 State and Behaviour 6

6 Speci�c Behaviour 8

7 For Friday 10

8 Acknowledgements 10

1 Outline
Many applications require the use of named constants. For example: A suit of cards: HEARTS, SPADES,

CLUBS, and DIAMONDS; prede�ned colours: BLACK, WHITE, RED, BLUE, …; and so on.

�ese named constants are also known as enumerated types: in Java enums. �ey are the topic of this

lecture.

We start with the switch statement. �is is a multi-way branching construct. It is not really about

enums, but we need it in some examples. We study a common, �awed pattern called int enums. Java enums

overcome most of the �aws of int enums. Java enums are just objects. �ey may have data and common

and speci�c behaviour. �e last part of this lecture—the part about enums—is based on [Bloch, 2008,

Item 30]. �is includes examples. Some of this lecture is based on the Java api documentation.

1

2 Multiway Branching
�e switch statement allows a Java program to make a decision based on a single value. It allows you to

make similar decisions as the following code fragment.

if (var == 0) {
// First stuff

} else if (var == 1 || var == 3) {
// Second stuff

} else if (var == 2 || var == 4) {
// Third stuff

} …

} else {
// Final stuff

}

Don’t Try this at Home

With the switch statement you write it as follows:

switch (var) {
case 0: // First stuff
case 1:
case 3: // Second stuff
case 2:
case 4: // Third stuff
…

default: // Final stuff
}

Java

�e decisions in the switch statement depend on the values of the guard values before the colons.

In the simplest case, the construct is written as follows.

switch (〈expr〉) {
case 〈constant #1〉: 〈statements #1〉
case 〈constant #2〉: 〈statements #2〉
…

case 〈constant #n〉: 〈statements #n〉
}

Java

�e statements 〈statements #1〉–〈statements #n〉 are statements which may contain the break
statement. For the moment we shall assume that the statements are non-empty. �e switch statement

works as follows.

1. First 〈expr〉 is evaluated. It should evaluate to an integer or character constant or to an enum.

2. Let 〈res〉 be the result of evaluating 〈expr〉.

3. �e constant 〈constant #i〉 is the guard of 〈statement #i〉.

2

4. 〈res〉 is compared against the guards until the �rst match.

5. If there is no match then nothing happens.

6. Otherwise, let 〈constant #m〉 be the �rst match.

7. 〈statements #m〉 are carried out.

8. If evaluating the statements in 〈statements #m〉 requires the evaluation of the break statement

then this transfers the �ow of control to the end of the switch statement.

9. Otherwise, the switch statement continues with matching 〈expr〉 against 〈constant #m+1〉, 〈constant #m+2〉,
and so on.

In the previous explanation it was assumed that the statements were all non-empty. In general the

switch statement also allows empty statements. For example, in the following 〈statements〉 is carried out

if 〈expr〉 is equal to 〈constant #1〉, if it is equal to 〈constant #2〉, …, or if it is equal to 〈constant #m〉.
switch (〈expr〉) {
case 〈constant #1〉:
case 〈constant #2〉:
…

case 〈constant #m〉: 〈statements〉
…

}

Java

Usually, the switch statement is used with a default case, which acts as a universal guard (a guard

that matches anything) and covers the default case.

switch (〈expr〉) {
case 〈constant #1〉: 〈statements #1〉
case 〈constant #2〉: 〈statements #2〉
…

case 〈constant #n〉: 〈statements #n〉
default: 〈default statements〉

}

Java

�e following is an example. �e variable character is a char.

3

switch (character) {
case ’A’:
case ’B’:
case ’C’:

System.out.println("Range: A–C.");
break;

case ’e’:
System.out.println("It’s an ’e’");
break;

default:
System.out.println("It’s not in {A,B,C,e}");

}

Java

3 �e int-enum Anti-Pattern
In the build up to enums we shall �rst study a commonly used programming anti-pattern called the

int-enum pattern [Bloch, 2008, Item 30].

An enumerated type is a type whose legal values consist of a �xed set of constants. For example: the

seasons of the year, the suits in a deck of cards, …. Frequently, enumerated types are implemented using

constant ints. Unfortunately, this is not a good idea. �e following demonstrates the anti-pattern.

public static final int APPLE_FUJI = 0;
public static final int APPLE_PIPPIN = 1;

public static final int ORANGE_NAVEL = 0;
public static final int ORANGE_TEMPLE = 1;
public static final int ORANGE_BLOOD = 2;

Don’t Try this at Home

�is technique is called the int enum pattern. Never, ever, ever, use it. It is seriously �awed.

�e following are some problems with int enums.

Type safety: Int enums don’t provide type safety. Since int enum values are ints, the compiler can’t

detect when you’re comparing apples and oranges. Also it can’t detect when values are out of range.

if (APPLE_FUJI == ORANGE_BLOOD) { /* ?? */ }
int apple = ORANGE_BLOOD; // ??

Don’t Try this at Home

Maintainability: Programs with int enums are brittle. Int enums are compile-time constants. �ey are

compiled into clients that use them. If an enum constant changes, the client will break. Unless, of

course, it is recompiled.

Ease of use: Int enums are di�cult to use. It is di�cult to translate them to Strings. �ere is no reliable

way to iterate over all allowed int enum values.

4

Namespace: Int enum types have no private name space. �is is why usually a pre�x is added to the

constant names to implement a “namespace”. �e pre�x corresponds to the type. For example, you

add APPLE_ before apple constant names, PEAR_ before pear constant names, and so on.

4 Enums to the Rescue
As of Release 1.5 Java provides the enum type. �ey overcome most, if not all, shortcomings of int enums.

Using enums you would implement the fruit example from the previous section as follows.

public enum Apple { FUJI, PIPPIN }
public enum Orange { NAVEL, TEMPLE, BLOOD }

Java

Each ‘public enum 〈class〉 { 〈constants〉 }’ is a class. Each constant in 〈constants〉 is an instance of

the class: an object. For each constant in any enum class, Java automatically de�nes one public final class

attribute. �e name of the constant 〈constant〉 in class 〈class〉 is 〈class〉.〈constant〉. For example the

Java compiler automatically translates the �rst enum class from the previous example to a class �le that has

constants Apple.FUJI and Apple.PIPPIN. Java enum classes are final and have no public constructors.

�e following demonstrates that enums are better than int enums.

Type safety: Java enums are type safe. If you try to write the following, the compiler will complain.

if (Apple.FUJI == Orange.BLOOD) { /* ?? */ }
Apple apple = Orange.BLOOD; // ??

Don’t Try this at Home

�e reason why the compiler will complain is that it will only let you compare Apples with Apples,

let you assign Apples to Apple variables, and let you use Apple values where Apple values are expected.

(However, since enums are objects, it is possible to use null where an enum value is expected.)

Maintainability: Java does not compile enums as constants into clients that use them. You can rearrange

enum values without breaking clients.

Ease of use: As we shall see shortly, it is easy to translate enums to Strings and easy to iterate over all

enum constants in the class.

Namespace: Enum classes have a private name space. So you can have two enum constants in two di�erent

enum classes, where the constants have the same name.

�e following are some of the methods which are de�ned for enum classes.

compareTo(that): Compares this enum with that for order.

equals(that): Returns true if this enum equals that.

hashCode(): Returns a hash code for this enum.

toString(): Returns the name of this enum constant. �e returned String is the same name as declared

in the enum declaration. (Unless the method is overridden, of course.)

5

name(): �is is a final method. Returns the name of this enum. �e returned String is the same name

as declared in the enum declaration.

ordinal(): Returns the ordinal of this enum. Here the ordinal of the enum is the position (an int) in

its enum declaration. As usual, the �rst ordinal value is zero.

5 State and Behaviour
We’ve seen that Java enums are �exible. But will they let you implement speci�c behaviour? For example,

what if you want the colour of a fruit? In the remainder of this section we shall implement an enum class

which is interesting enough to demonstrate how enum classes can implement state and behaviour.

Consider the eight planets of the solar system. Each planet has a mass and a radius. Using the mass

and radius you can compute the planet’s surface gravity. Notice that normally you would implement the

mass and radius as instance attributes and compute the surface gravity with an instance method. �is is

exactly what we’re going to do in our enum class.

�e following is a possible implementation of our Planet class.

public enum Planet {
MERCURY(3.303e+23, 2.439e6),
VENUS (4.869e+24, 6.052e6),
EARTH (5.975e+24, 6.378e6),
MARS (6.419e+23, 3.393e6),
JUPITER(1.899e+27, 7.149e7),
SATURN (5.685e+26, 6.027e7),
URANUS (8.683e+25, 2.556e7),
NEPTUNE(1.024e+26, 2.477e7);

// Universal gravitational constant in m^3/kg s^2.
private static final double G = 6.67300E-11;
private final double mass;
private final double radius;
private final double gravity;

Planet(double mass, double radius) {
this.mass = mass;
this.radius = radius;
gravity = G * mass / (radius * radius);

}

public double getMass() { return mass; }
public double getRadius() { return radius; }
public double getGravity() { return gravity; }

}

Java

6

Before studying the start of the class let’s have a look at the instance attributes: mass, radius, and

gravity. �ey look pretty much as attributes of any other class and there’s nothing special about them.

Next let’s look at the constructor. �is also works pretty much as expected. For our Planet application

the constructor uses its arguments to initialise the atrributes of the object which is currently being

contructed. However, there is one peculiar aspect about the constructor: it is implicitly private. �is is

caused by the fact that the constructor is that of an enum class.

�e instance methods getMass(), getRadius, and getGravity() also work as per usual: given a

class instance reference they are used to get attributes of that instance. So if you write PLUTO.getMass()
you get the mass of PLUTO.

Finally, let’s have a look at the constants at the top of the class. For our Apple and Pear class there were

no parentheses and arguments inside them. Looking back we can now see why arguments are needed

here and not in the Apple and Pear class. A�er all, something must be responsible for constructing

the Planet objects. So MERCURY(3.303e+23, 2.439e6) constructs the object called MERCURY, VENUS(
4.869e+24, 6.052e6) constructs the object called VENUS, and so on.

Having implemented the class, we can now build some more functionality on top of it. �e following

class can print some useful information about the planets.

public class WeightTable {
public static void main(String[] args) {

for (Planet planet : Planet.values()) {
double weight = surfaceWeight(planet, 1.0);
System.out.println("1kg on " + planet

+ " has a surface weight of "
+ weight + ".");

}
}

private static double surfaceWeight(Planet planet, double mass) {
return mass * planet.getGravity();

}
}

Java

When we run the program we get the following.

$ java WeightTable
1kg on MERCURY has a surface weight of 3.7051525865812165.
1kg on VENUS has a surface weight of 8.870805573987766.
1kg on EARTH has a surface weight of 9.80144268461249.
1kg on MARS has a surface weight of 3.720666819023476.
1kg on JUPITER has a surface weight of 24.794508028173404.
1kg on SATURN has a surface weight of 10.443575504720215.
1kg on URANUS has a surface weight of 8.868889152162147.
1kg on NEPTUNE has a surface weight of 11.137021762915634.
$

Unix Session

7

Wow. �at’s pretty impressive for a short program like that. Let’s get back and see why the program is

so short.

�e �rst reason why the program is so short is that class method values() is very convenient: you

get it for free with any enum class. �e method simply returns an array consisting of all Planet constants.

Using the enhanced for notation we iterate over all the planets.

�e second reason why the program is so short is that toString() properly returns the names of the

Planet constants. Again, you get this behaviour for free with any enum class.

With int enums you could never have implemented this application with such little programming

e�ort.

Finally, there is no reason why all methods in enum classes should be getter methods. For example we

could have implemented an instance method double surfaceWeight(double mass) in the Planet
class.

public double surfaceWeight(double mass) {
return mass * gravity;

}

Java

With this method we could have written the for loop in the WeightTable program as follows:

for (Planet planet : Planet.values()) {
System.out.println("1kg on " + planet

+ " has a surface weight of "
+ planet.SurfaceWeight(1.0) + ".");

}

Java

6 More Speci�c Behaviour
Our Planet application is very well behaved. �e result of all methods depends on the input and instance

attributes only. �is is not always the case. For example, consider a calculator application. �ere are four

operations PLUS, MINUS, TIMES, and DIVIDE. Ideally, we’d like to apply each operation to two doubles and

get the result. So the signature of the method should be something like double apply(double first,
double second). Forthermore, PLUS.apply(0.0, 1.0) should return 1.0, MINUS.apply(0.0, 1.0
) should return -1.0, and so on. Here the result also depends on the enum constant.

So, how do we implement this? �e following is a �rst try.

8

public enum Operation {
PLUS, MINUS, TIMES, DIVIDE;

public double apply(double first, double second) {
double result;
switch(this) {
case PLUS: result = first + second; break;
case MINUS: result = first - second; break;
case TIMES: result = first * second; break;
case DIVIDE: result = first / second; break;
default: String error = "Unknown Operation: " + this;

throw new AssertionError(error);
}
return result;

}
}

Don’t Try this at Home

�is is not very pretty. First we have to implement a default case. Without the default case the

compiler would have complained because it doesn’t know that all cases cover all enum constants.

�e second reason why this attempt is not very pretty is that the code is fragile. If an Operation is

added or removed then we have to change the method.

�e following is much prettier. First we make apply abstract. Next we let each enum value implement

its own behaviour by overriding an abstract method.

public enum Operation {
PLUS { @Override

public double apply(double x, double y) { return x + y; } },
MINUS { @Override

public double apply(double x, double y) { return x - y; } },
TIMES { @Override

public double apply(double x, double y) { return x * y; } },
DIVIDE { @Override

public double apply(double x, double y) { return x / y; } };

public abstract double apply(double first, double second);
}

Java

�e group following the name of the enum constants acts as a the body of a private class which may be

used to implement speci�c behaviour of the constants. Inside you may have attributes, override abstract
methods, and implement private methods.

�at was pretty nice, but for the Operation constants to “print” themselves in a meaningful way then

we need to override toString() on a per constant basis. �is is pretty standard.

9

public enum Operation {
PLUS { @Override

public String toString() { return "+"; }
@Override
public double apply(double x, double y) { return x + y; }},

〈rest of class omitted〉

Java

With this class we can write programs as the following without much e�ort.

public class Calculator {
public static void main(String[] args) {

for (Operation op : Operation.values()) {
double first = 6;
double second = 2;
double result = op.apply(first, second);
System.out.println(first + " " + op + " " + second

+ " = " + result);
}

}
}

Java

We may use the program as follows:

$ java Calculator
6.0 + 2.0 = 8.0
6.0 - 2.0 = 4.0
6.0 * 2.0 = 12.0
6.0 / 2.0 = 3.0
$

Unix Session

7 For Friday
Study the lecture notes, and [Bloch, 2008, Item 30] if you have the book.

8 Acknowledgements
�e second part of this lecture is based on [Bloch, 2008, Item 30]. Some of this lecture is based on the

Java api documentation.

References
[Bloch, 2008] Joshua Bloch. E�ective Java. Addison–Wesley, 2008.

10

	Outline
	Multiway Branching
	Int Enums
	Enums to the Rescue
	State and Behaviour
	Specific Behaviour
	For Friday
	Acknowledgements

